

ZPressor: Bottleneck-Aware Compression for Scalable Feed-Forward 3DGS

Weijie Wang¹

Donny Y. Chen²

Zeyu Zhang³

Duochao Shi¹

Akide Liu³

Bohan Zhuang¹

¹Zhejiang University ²ByteDance Seed ³Monash University

Weijie Wang (王伟杰) College of Computer Science and Technology, Zhejiang University

2025/11/7

About Me

>>>> Weijie Wang (王伟杰)

First-year Ph.D. student@ **ZIP Lab, State Key Lab of CAD&CG, ZJU**Supervised by **Prof. Bohan Zhuang**

Research Interest:

• Feed-Forward Reconstruction: <u>ZPressor</u>, <u>PM-Loss</u>, <u>VolSplat</u>

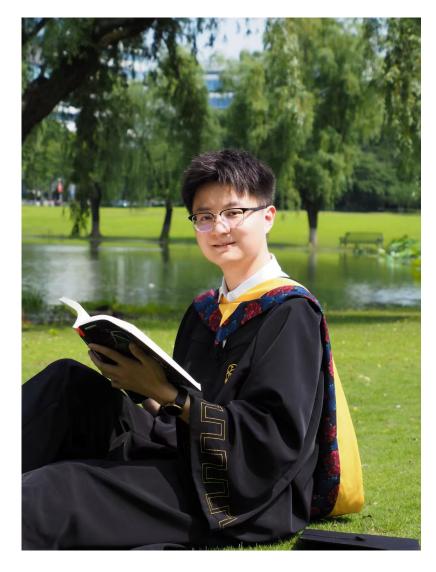
• Dynamic Reconstruction: <u>Street Gaussians</u>, <u>DriveGen3D</u>

Interactive Generation: WonderTurbo

Webpage: https://lhmd.top

Email: wangweijie@zju.edu.cn

Wechat: zju-lhmd



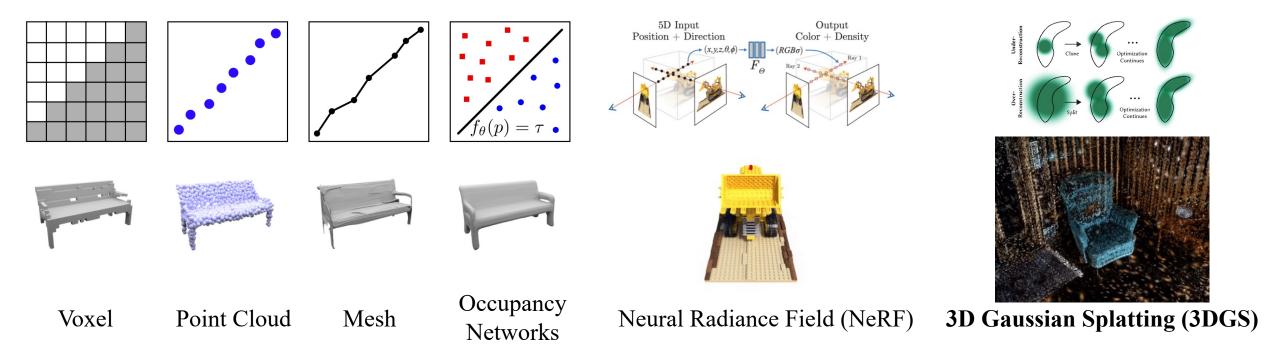
Tasks

Inputs: 2D observed views

3D Reconstruction

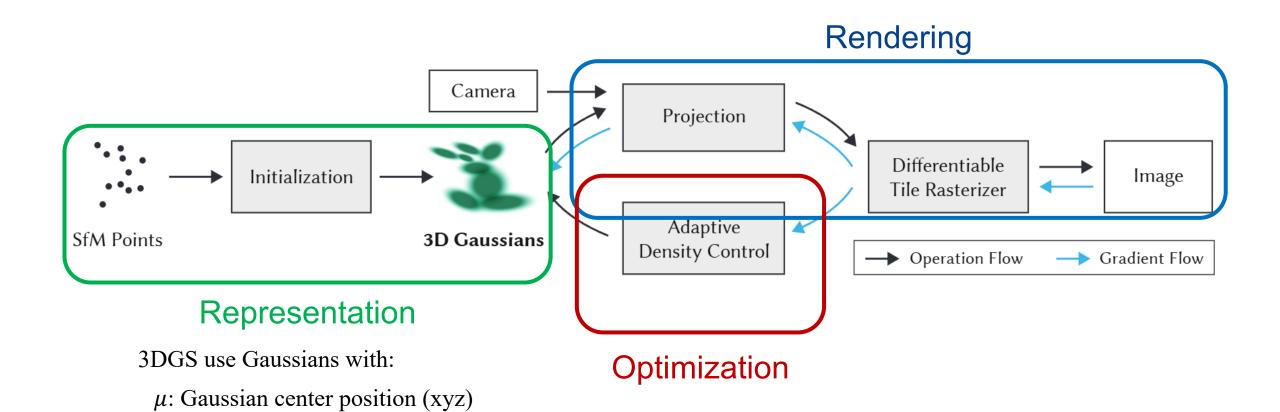
Novel View Synthesis

3D Representations



There is no canonical representation in 3D. We chose 3DGS since it performs the best for NVS in general.

3D Gaussian Splatting (3DGS)



 α : opacity; (how transparent)

 Σ : covariance; (scale, rotation)

c: color; (spherical harmonic)

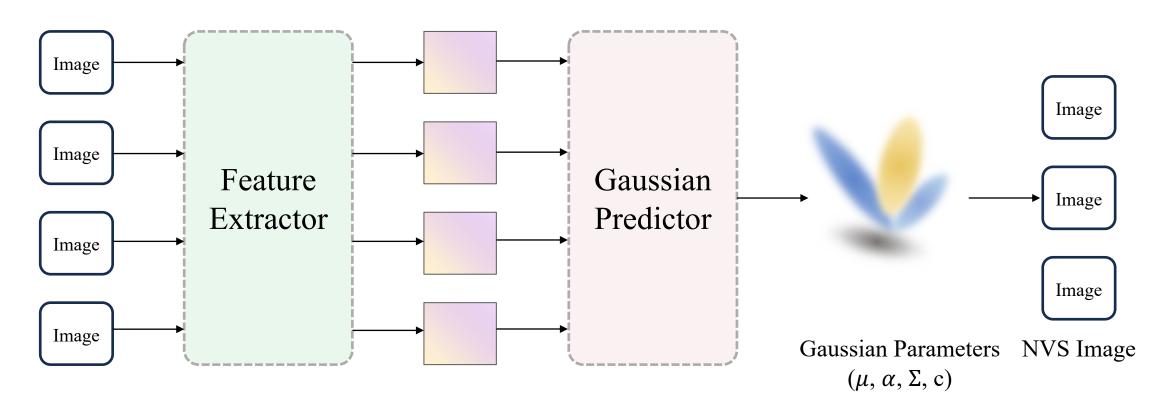
Limitations of Per-Scene based 3DGS

- **1. Time:** requires applying the optimization process to *each scene* (20+ mins)
- **2. Space:** requires additional permanent storage for the 3D representation of *each scene* (10+ M)

The bicycle scene takes: ~50 mins, ~100 M

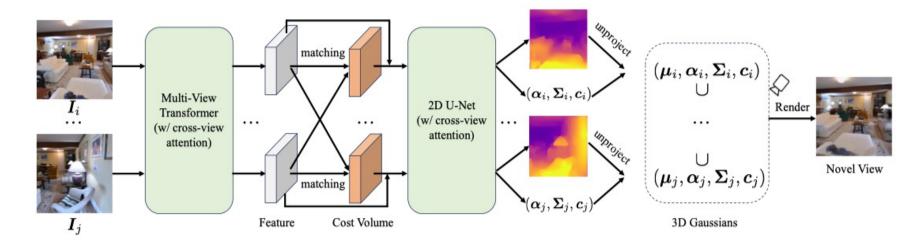
Note: Here, we refer to the inria's version of 3DGS; NOT those improved models such as sparse-view 3DGS, fast-training 3DGS, 3DGS compression, *etc.*

Pipeline of Feed-Forward 3DGS



Almost all feed-forward 3DGS networks use this paradigm.

Example: MVSplat



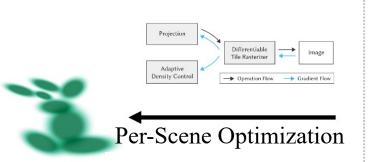
$$f_{\boldsymbol{\theta}}: \{(\boldsymbol{I}^i, \boldsymbol{P}^i)\}_{i=1}^K \mapsto \{(\boldsymbol{\mu}_j, \alpha_j, \boldsymbol{\Sigma}_j, \boldsymbol{c}_j)\}_{j=1}^{H \times W \times K}$$

Inputs: Multi-view images, with corresponding camera poses

Outputs: Pixel-align 3D Gaussians for the scenes

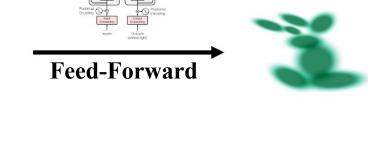
NVS: Render the predicted 3DGS from novel viewpoints

Per-Scene VS Feed-Forward



Time: 10+ mins

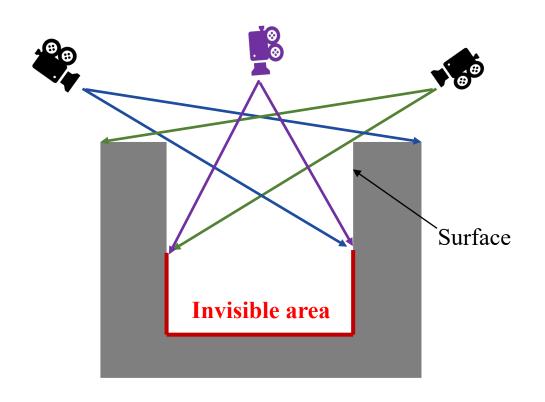
Space: 10+ M

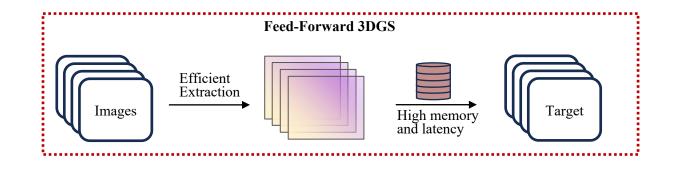


Time: Real-time or a few seconds

Space: Direct inference, no permanent storage

Challenges in Feed-Forward 3DGS

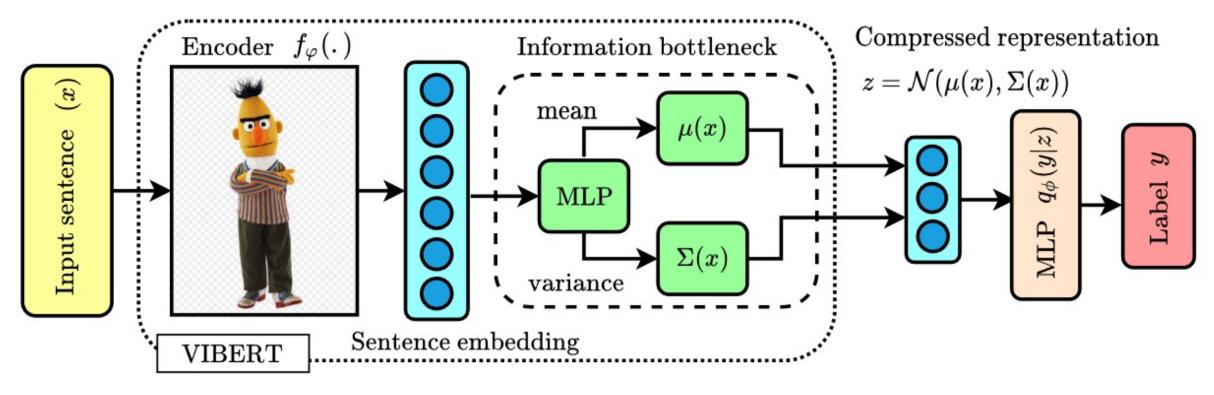




We need denser views to **provide more** information, but at the same time not be influenced by redundancy.

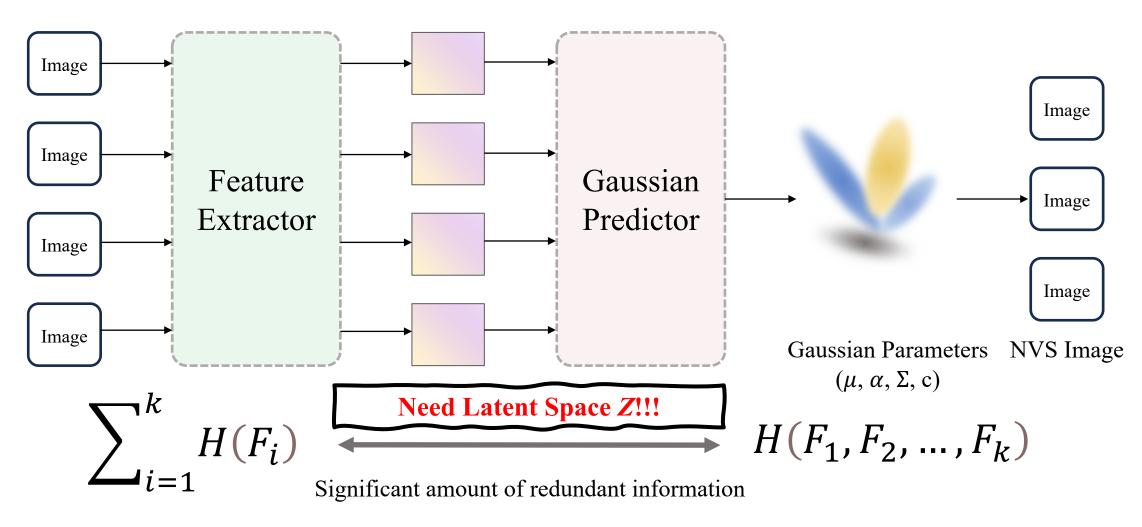
The scalability of feed-forward 3DGS is fundamentally constrained by the limited capacity of their networks.

Information Bottleneck Theory

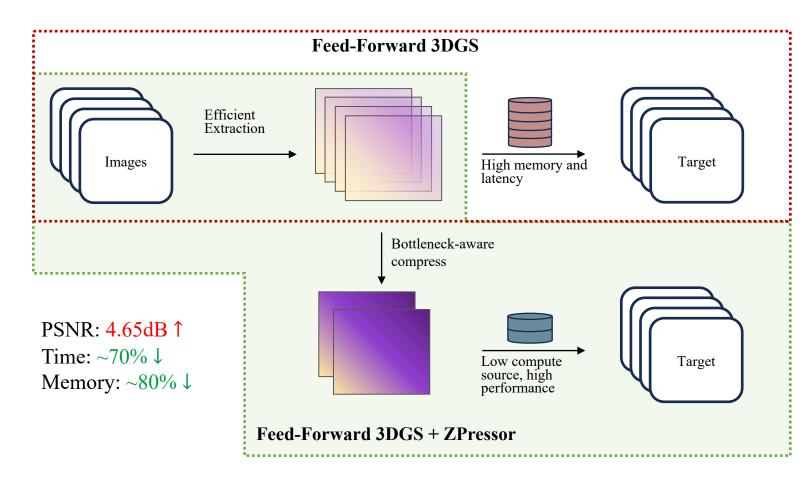


$$I(Z,Y;\boldsymbol{\theta}) = \int dx \; dy \; p(z,y|\boldsymbol{\theta}) \log \frac{p(z,y|\boldsymbol{\theta})}{p(z|\boldsymbol{\theta})p(y|\boldsymbol{\theta})}.^{2} \qquad \min_{\mathcal{Z}} IB = \underbrace{\beta \, I(\mathcal{X},\,\mathcal{Z})}_{\text{Compression Score}} - \underbrace{I(\mathcal{Z},\,\mathcal{Y})}_{\text{Prediction Score}}$$

Information Flow in FF 3DGS



Bottleneck-Aware Compression



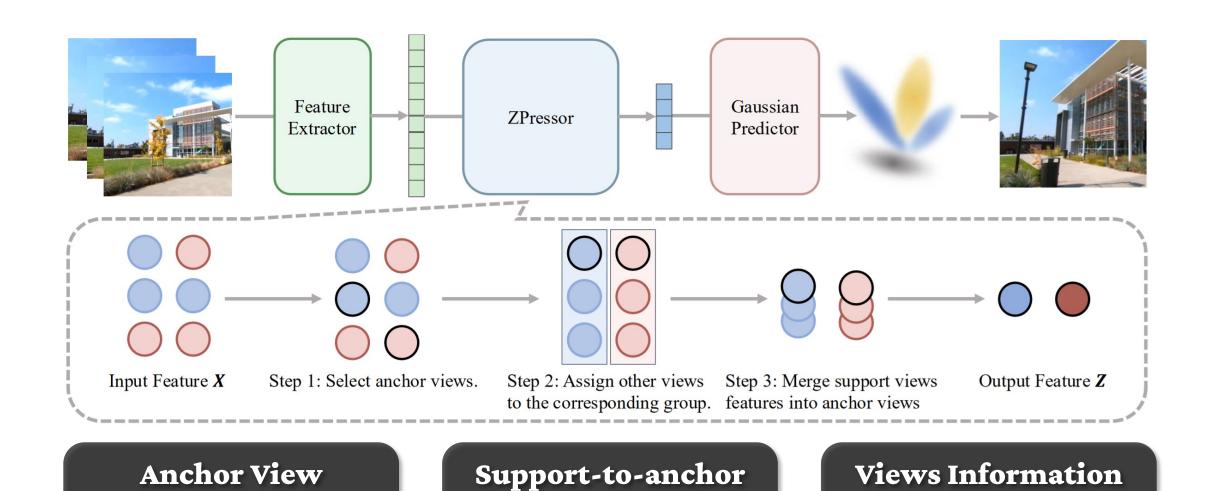
$$\min_{\mathcal{Z}} IB = \underbrace{\beta I(\mathcal{X}, \mathcal{Z})}_{\text{Compression Score}} - \underbrace{I(\mathcal{Z}, \mathcal{Y})}_{\text{Prediction Score}}$$

- Compression Score: Minimizing $I(\mathcal{X},$ $\mathcal{Z})$
- 2. Prediction Score: Maximizing $I(\mathcal{Z}, \mathcal{Y})$

Note: The mutual information (MI) of two random variables $I(\cdot,\cdot)$ is a measure of the mutual dependence between the two variables.

Zpressor: Overview

Selection



Assignment

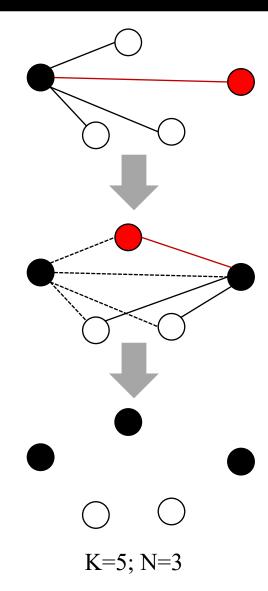
ZPressor – Weijie Wang 14

Fusion

Anchor View Selection

Algorithm 2 Farthest Point Sampling for Anchor View Selection

```
Input: Set of view camera positions \mathcal{T} = \{\mathbf{T}_1, \mathbf{T}_2, ..., \mathbf{T}_K\}, Number of anchor views N
Output: Indices of the selected anchor views S = \{T_{a_1}, T_{a_2}, ..., T_{a_n}\}
    Initialize the set of anchor view indices \mathcal{S} \leftarrow \emptyset
   Randomly select a random anchor view \mathbf{T}_{a_1} \in \mathcal{T}, where \mathbf{T}_{a_1} \sim \text{Uniform}(\mathcal{T})
    Add \mathbf{T}_{a_1} to \mathcal{S}: \mathcal{S} \leftarrow \{\mathbf{T}_{a_1}\}
   for j \leftarrow 2 to N do
         Initialize a dictionary to store minimum distances D \leftarrow \{\}
         for k \leftarrow 1 to K do
              if k \notin \mathcal{S} then
                    Calculate the minimum distance d_k \leftarrow \min_{i \in \mathcal{S}} \|\mathbf{T}_k - \mathbf{T}_i\|_2
                    Store the distance: D[k] \leftarrow d_k
               end if
         end for
         Find the view position T_{a_i} with the maximum minimum distance: T_{a_i} \leftarrow \arg\max_{k \notin \mathcal{S}} D[k]
         Add a_j to \mathcal{S} : \mathcal{S} \leftarrow \mathcal{S} \cup \{T_{a_i}\}
   end for
    return S
```



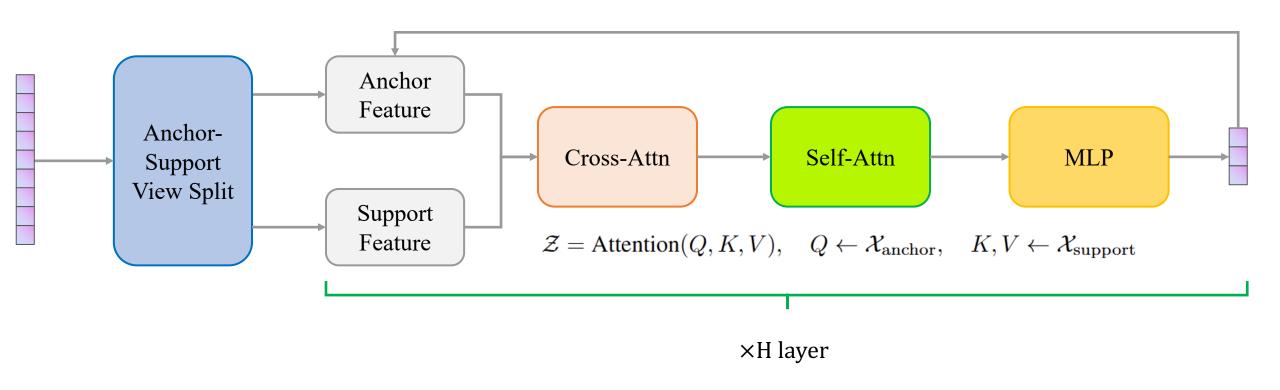
Support-to-anchor Assignment

View Groups after Step 1 and Step 2

- Once anchor views are selected, each support view is assigned to its nearest anchor based on camera position.
- This grouping ensures that support views, which capture complementary scene details, are paired with the most spatially relevant anchor views.
- This pairing thereby ensures the effectiveness of information fusion.
- Formally, the cluster assignment to the i-th anchor view can be denoted as:

$$C_i = \{ f(\mathbf{T}) \in \mathcal{X}_{\text{support}} \mid ||\mathbf{T} - \mathbf{T}_{a_i}|| \le ||\mathbf{T} - \mathbf{T}_{a_j}||, \forall j \ne i \}$$

Views Information Fusion



Design of Feature Fusion Networks. Feature Fusion by Cross-Attention, Self-Attention and MLP.

Results on DL3DV with DepthSplat

Views	Methods	PSNR↑	SSIM↑	LPIPS↓
36 views	DepthSplat + ZPressor	19.23 23.88 +4.65	0.666 0.815 _{+0.149}	0.286 0.150 -0.136
24 views	DepthSplat + ZPressor	20.38 24.26 +3.88	0.711 0.820 _{+0.109}	0.253 0.147 -0.106
16 views	DepthSplat + ZPressor	22.07 24.25 _{+2.18}	0.773 0.819 _{+0.046}	0.195 0.147 -0.047
12 views	DepthSplat + ZPressor	23.32 24.30 _{+0.97}	0.807 0.821 _{+0.014}	0.162 0.146 -0.017

Results on RE10K with MVSplat and pixelSplat

Views	Methods	PSNR ↑	SSIM↑	LPIPS↓
36 views	pixelSplat	OOM	OOM	OOM
	pixelSplat + ZPressor	26.59	0.849	0.225
	MVSplat	24.19	0.851	0.155
	MVSplat + ZPressor	27.34+3.15	$0.893_{\pm 0.042}$	0.113-0.042
	pixelSplat	OOM	OOM	OOM
24 views	pixelSplat + ZPressor	26.72	0.851	0.223
	MVSplat	25.00	0.871	0.137
	MVSplat + ZPressor	$27.49_{+2.49}$	$0.895_{\pm 0.024}$	0.111-0.026
16 views	pixelSplat	OOM	OOM	OOM
	pixelSplat + ZPressor	26.81	0.853	0.221
	MVSplat	25.86	0.888	0.120
	MVSplat + ZPressor	27.60 _{+1.74}	$0.896_{\pm 0.008}$	0.110-0.010
8 views	pixelSplat	26.19	0.852	0.215
	pixelSplat + ZPressor	$26.86_{\pm 0.67}$	$0.854_{\pm 0.002}$	0.219 ± 0.004
	MVSplat	26.94	0.902	0.107
	MVSplat + ZPressor	$27.72_{\pm 0.78}$	0.897 - 0.005	0.109 ± 0.002

Qualitative comparison

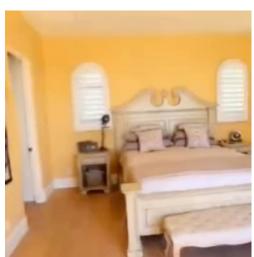
DepthSplat

DepthSplat+ZPressor

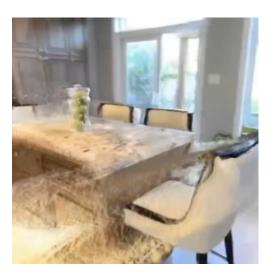
DepthSplat

DepthSplat+ZPressor

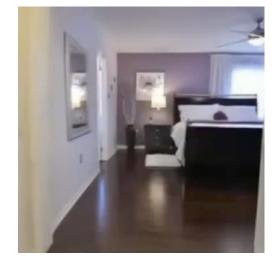
Qualitative comparison



MVSplat



MVSplat+ZPressor

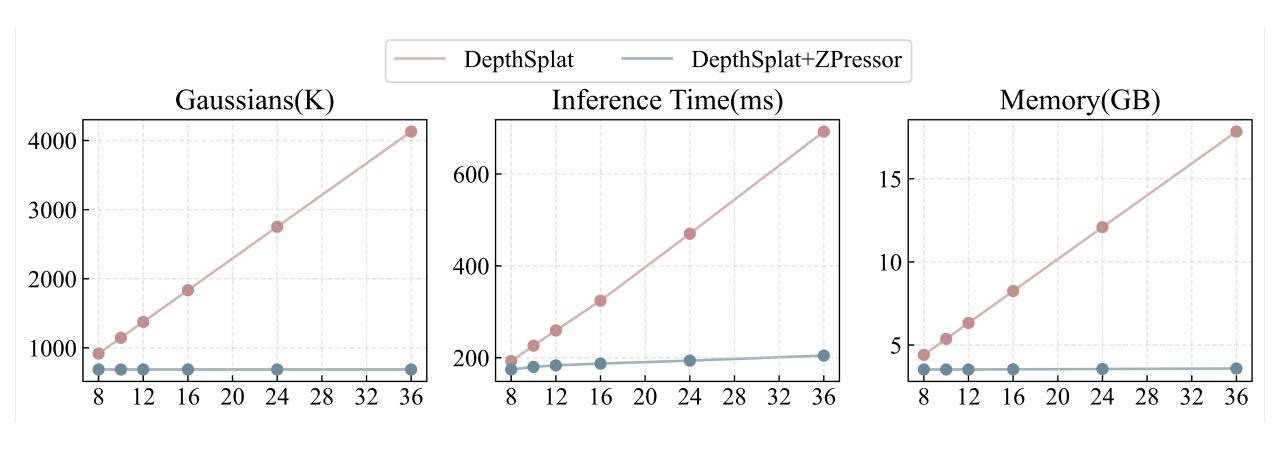


MVSplat+ZPressor

Cross Dataset Generalization on ACID

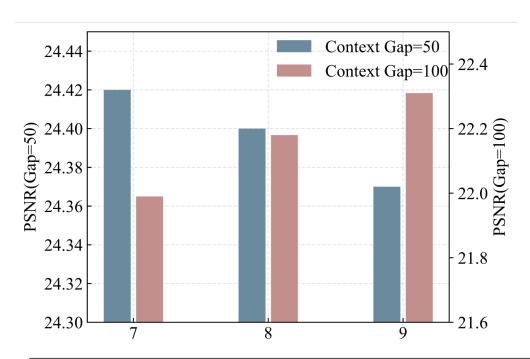
Views	Methods	PSNR↑	SSIM↑	LPIPS↓
36 views	pixelSplat	OOM	OOM	OOM
	pixelSplat + Ours	27.78	0.823	0.238
	MVSplat	24.89	0.812	0.179
	MVSplat + Ours	28.16+3.27	$0.853_{\pm 0.041}$	0.145-0.034
	pixelSplat	OOM	OOM	OOM
24 views	pixelSplat + Ours	27.91	0.825	0.235
	MVSplat	25.46	0.829	0.167
	MVSplat + Ours	28.33+2.87	$0.856_{\pm 0.027}$	$0.142_{-0.025}$
16 views	pixelSplat	OOM	OOM	OOM
	pixelSplat + Ours	27.97	0.826	0.234
	MVSplat	26.08	0.844	0.156
	MVSplat + Ours	$28.42_{+2.34}$	$0.858_{\pm 0.014}$	$0.141_{-0.015}$
8 views	pixelSplat	26.69	0.807	0.260
	pixelSplat + Ours	28.05+1.36	$0.828_{\pm 0.021}$	$0.234_{-0.026}$
	MVSplat	27.89	0.864	0.140
	MVSplat + Ours	$28.60_{\pm 0.71}$	0.860-0.004	0.140-0.000

Model Efficiency



Linear no more: constant memory, constant time.

Bottleneck Analysis and Ablation Study

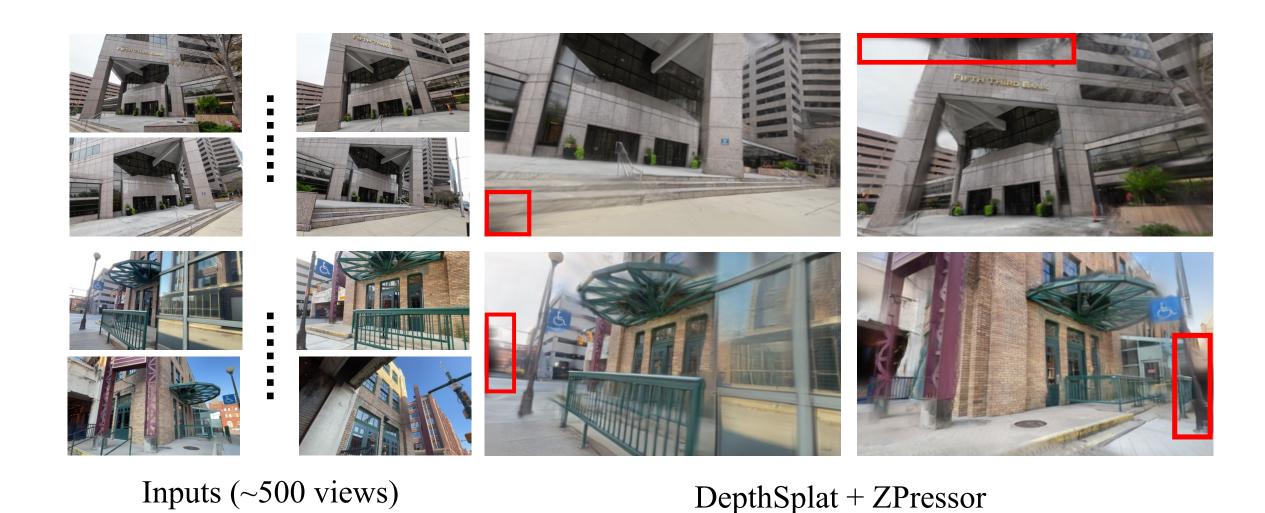


Analysis of bottleneck:

- Different levels of complexity benefit from different bottlenecks
- Effective compression preserves essential scene information.

Methods	PSNR↑	SSIM↑	LPIPS↓	Time (s)	Peak Memory (GB)
DepthSplat + ZPressor	24.30	0.821	0.146	0.184	3.80
w/o multi-blocks	24.18	0.817	0.149	0.140	3.79
w/o self-attention	23.85	0.810	0.156	0.183	3.80
DepthSplat	23.32	0.808	0.162	0.260	6.80

Limitations



ZPressor exhibits limitations when processing scenarios with an extremely high density of input views.

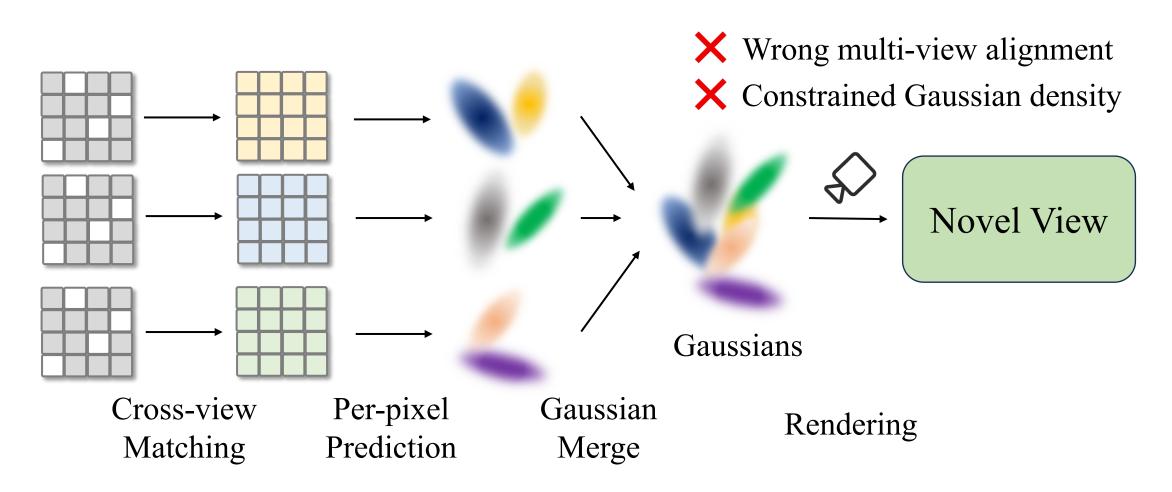
VolSplat

Weijie Wang^{1,2*} Yeqing Chen^{3*} Zeyu Zhang² Hengyu Liu^{2,4} Haoxiao Wang¹ Zhiyuan Feng⁵ Wenkang Qin² Zheng Zhu^{2†} Donny Y. Chen⁶ Bohan Zhuang^{1†}

* Equal contribution † Corresponding authors

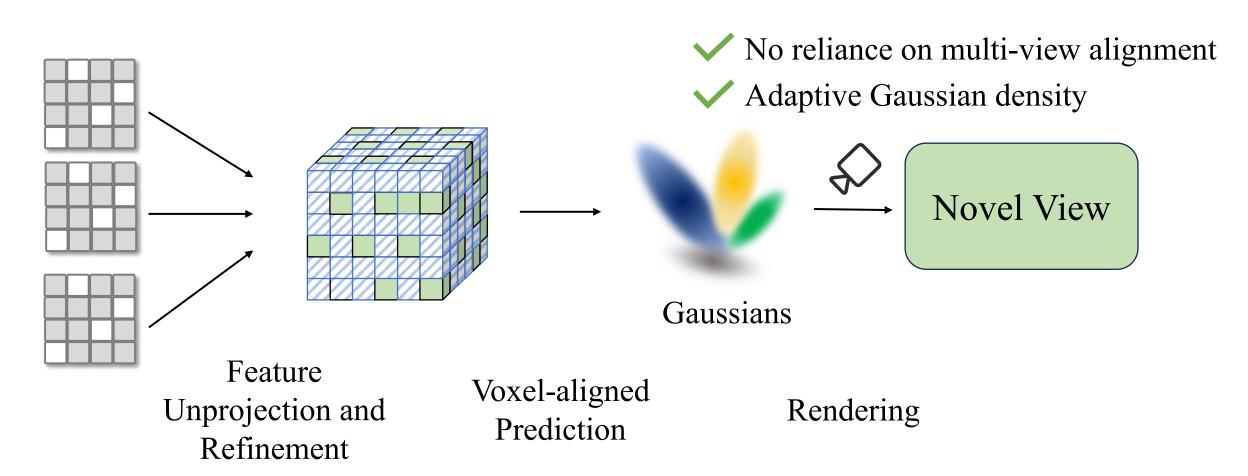
¹Zhejiang University ²GigaAl ³University of Electronic Science and Technology of China ⁴The Chinese University of Hong Kong ⁵Tsinghua University ⁶Monash University

Previous Feed-Forward Methods



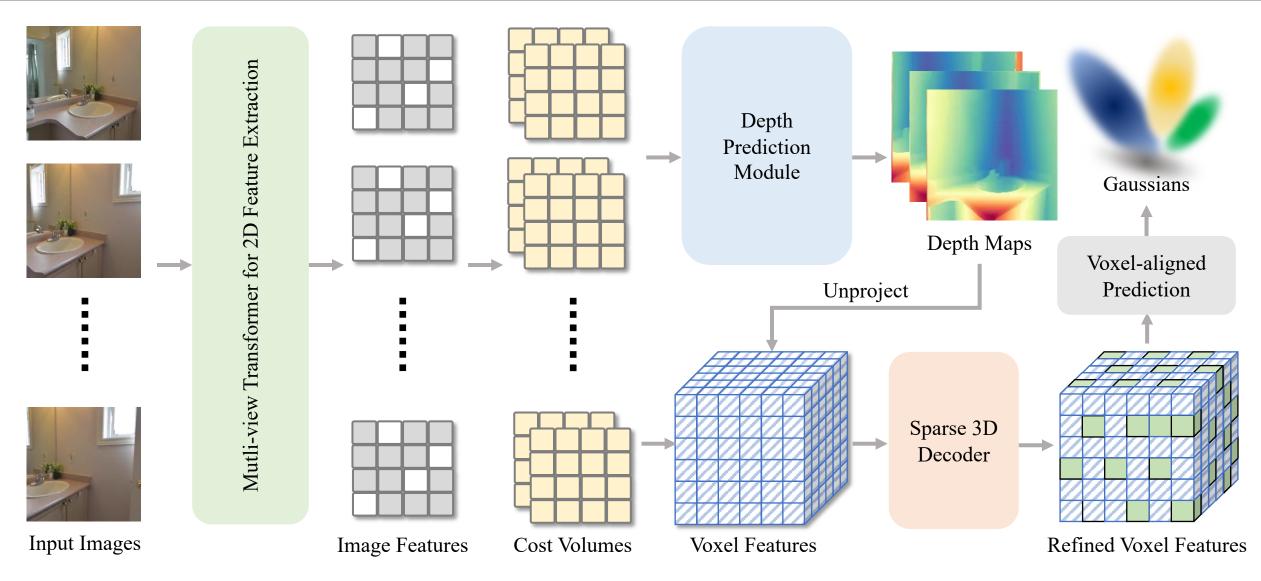
Pixel-aligned Feed-forward 3DGS

VolSplat



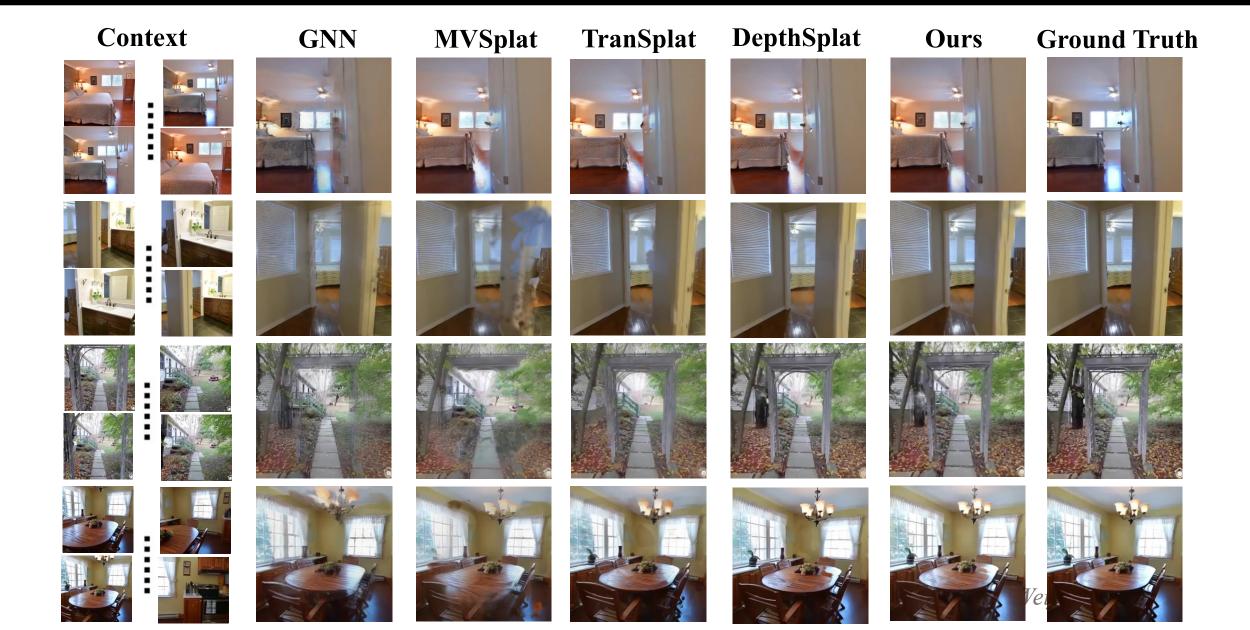
Voxel-aligned Feed-forward 3DGS (Ours)

Pipeline

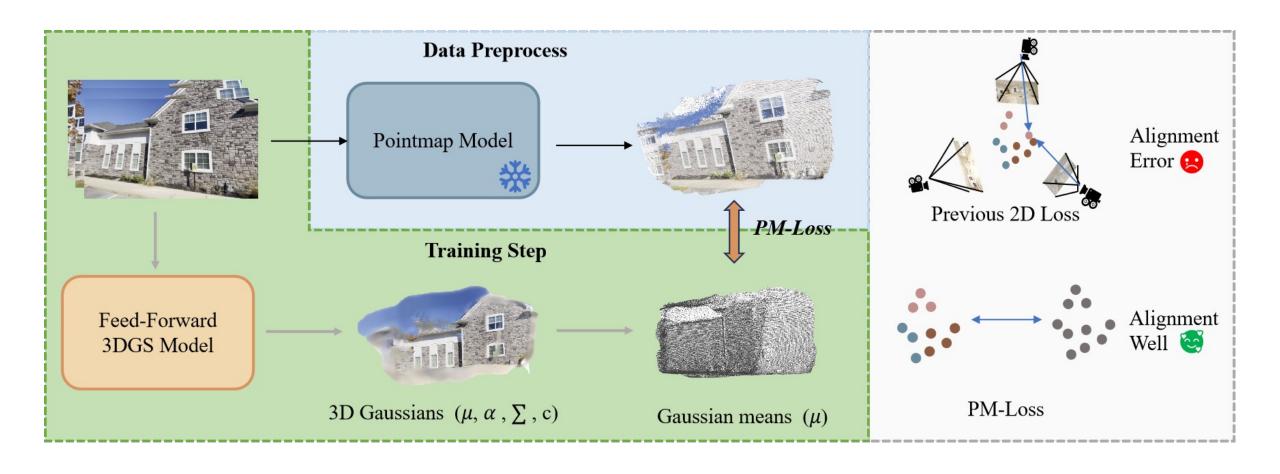


ZPressor – Weijie Wang

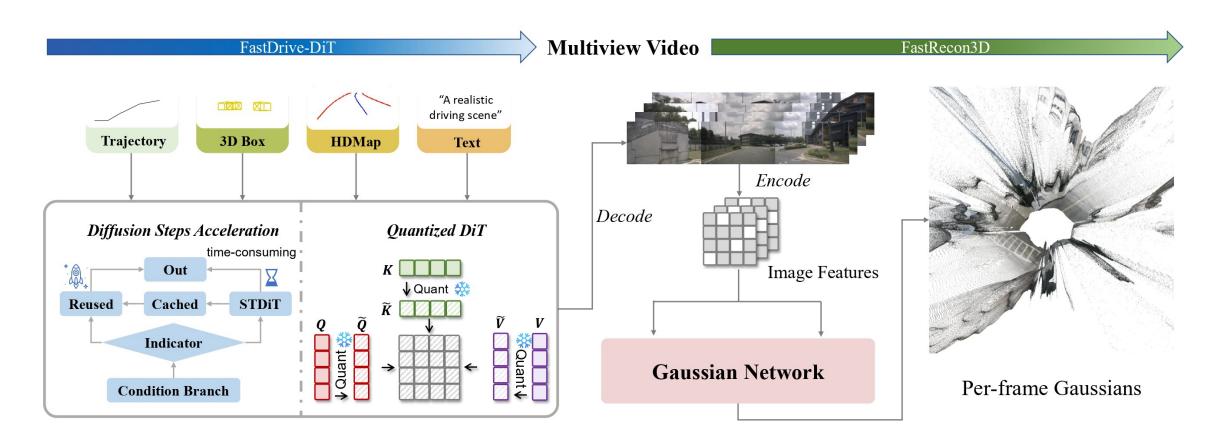
SoTA Performance



PM-Loss



DriveGen3D



More Information

ZPressor's project page. Paper, code and models are available.

Weijie Wang's WeChat. Actively seeking internship opportunities.

Conclusion:

- ZPressor is a **lightweight**, architecture-agnostic module designed for scalable feed-forward 3DGS
- We bridges IB principle and 3D generative modeling, offering a new perspective on scalable 3D scene reconstruction.